Sample Final C, Math 1554

PLEASE PRINT YOUR NAME CLEARLY IN ALL CAPITAL LETTERS

$$
\begin{aligned}
& \text { First Name ___ Last Name ___ @TID Number: __ @gatech.edu }
\end{aligned}
$$

Section Number (e.g. A4, QH3, etc.) \qquad TA Name \qquad

Student Instructions

- Show your work and justify your answers for all questions unless stated otherwise.
- Organize your work in a reasonably neat and coherent way.
- Calculators, notes, cell phones, books are not allowed.
- Use dark and clear writing: your exam will be scanned into a digital system.
- Exam pages are double sided. Be sure to complete both sides.
- Leave a 1 inch border around the edges of exams.
- Any work done on scratch paper will not be collected and will not be graded.

You do not need to justify your reasoning for questions on this page.

1. (6 points) Circle true if the statement is true, otherwise, circle false.
(a) A product of invertible matrices is also invertible.
true false
(b) Regardless what A and \vec{b} are, there is always at least one least-squares solution \hat{x} to $A \vec{x}=\vec{b}$. Assume \mathbf{A} is $\mathbf{m} \times \mathbf{n}$ and \mathbf{b} is in $\mathbf{R}^{\wedge} \mathbf{m}$ so that $\mathbf{A} \mathbf{x}=\mathbf{b}$ is defined.
true false
(c) If $A \vec{x}_{0}=\vec{b}$, and $A \vec{y}=\overrightarrow{0}$, then $\vec{x}=\vec{x}_{0}-5 \vec{y}$ is a solution to $A \vec{x}=\vec{b}$.
true false
(d) An example of a quadratic form is the polynomial $7 x_{1}^{2}+5 x_{2}^{2}-10 x_{1} x_{2}+x_{2}$.
true false
(e) If a matrix is invertible then it is also diagonalizable.
true false
(f) A $n \times n$ matrix A and its echelon form E have the same eigenvalues.

true false

2. (6 points) Circle possible if the set of conditions are create a situation that is possible, otherwise, circle impossible.
(a) The columns of matrix A are linearly independent, and $\operatorname{Null} A^{T}$ is not trivial.
possible impossible
(b) A is $n \times n, \lambda \in \mathbb{R}$ is an eigenvalue of A, and $\operatorname{dim}\left(\operatorname{Col}(A-\lambda I)^{\perp}\right)=0$.
possible impossible
(c) Stochastic matrix P has zero entries and is regular.
possible impossible
(d) A is a square matrix that is not diagonalizable, but A^{2} is diagonalizable.

possible impossible

(e) A is $5 \times 4, A \vec{x}=\vec{b}$ has three free variables, and $\operatorname{dim}\left(\operatorname{Row}(A)^{\perp}\right)=3$.
possible impossible
(f) A $m \times n$ matrix A has linear transformation T_{A}. The map T_{A} can be one-to-one but not onto.
possible impossible

Math 1554, Sample Final C. Your initials: \qquad
You do not need to explain your reasoning for questions on this page.
3. (8 points) If possible, give an example of the following. If it is not possible, write "not possible".
(a) A matrix that is 2×4, in reduced echelon form, with the dimension of column space being 3, and dimension of null space is 1 .
(b) A 3×4 matrix with orthonormal columns.
(c) A 3×2 matrix A in reduced echelon form so that $A^{T} A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
(d) A stochastic matrix for the Markov Chain below.

(e) A 2×2 matrix whose column space is the line $2 x_{1}+x_{2}=0$, and whose null space is the line $4 x_{1}-x_{2}=0$.

Math 1554, Sample Final C. Your initials: \qquad
4. (10 points) A has exactly two distinct eigenvalues, which are -2 , and 1 .

$$
A=\left(\begin{array}{ccc}
0 & 1 & -1 \\
1 & 0 & 1 \\
-1 & 1 & 0
\end{array}\right)
$$

(a) Construct an eigenbasis for eigenvalue $\lambda=-2$.
(b) Construct an eigenbasis for eigenvalue $\lambda=1$.
(c) If possible, construct matrices P and D such that $A=P D P^{T}$, and P is a matrix with orthonormal columns and D is a diagonal matrix.

Math 1554, Sample Final C. Your initials:
5. (10 points) Construct the singular value decomposition of $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)$.

Math 1554, Sample Final C. Your initials: \qquad
6. (6 points) Circle true if the statement is true, otherwise, circle false. You do not need to explain your reasoning.
(a) For any $n \times n$ matrix A, and non-zero vectors x and y with $A x=2 x$ and $A y=3 y$, then x and y are orthogonal.
true false
(b) A $n \times n$ matrix A and A^{T} have the same eigenvectors.
true false
(c) For two matrices A, B, if the product $A B$ is defined, then $(A B)^{T}=A^{T} B^{T}$.
true false
(d) If $\vec{x}, \vec{y} \in \mathbb{R}^{n}$, then the span of $\{\vec{x}, \vec{y}\}$ is equal to the span of $\{\vec{x}, \vec{x}-\vec{y}\}$.
true false
(e) This is a subspace of $\mathbb{R}^{3}: H=\left\{\vec{x} \in \mathbb{R}^{3}: x_{1}-x_{2}+x_{3}=1\right\}$ true false
(f) For any matrix A, if $x \in \operatorname{Col} A$, and $y \in \operatorname{Null} A$, then $x^{T} y=0$.
true false
7. (4 points) Circle possible if the set of conditions are create a situation that is possible, otherwise, circle impossible. You don't need to explain your reasoning.
(a) Matrix A is $5 \times 10, b \in \mathbb{R}^{5}$, and $A x=b$ has a unique solution.
possible impossible
(b) Matrix A has echelon form E, and $\operatorname{Null} A \neq \operatorname{Null} E$.
possible impossible
(c) Matrix A has a null space of dimension 1, and the linear transformation T_{A} is one to one.
possible impossible
(d) Matrix A is 3×4 and has orthonormal columns.
possible impossible

Math 1554, Sample Final C. Your initials: \qquad
You do not need to explain your reasoning for questions on this page.
8. (4 points) $H=\left\{\vec{x} \in \mathbb{R}^{4}: x_{1}=5 x_{4}\right\}$.
(a) Write down a basis for H.
(b) Write down a basis for H^{\perp}.
9. (4 points) Fill in the blanks.
(a) Complete the matrix below so that the least squares solution to $A x=b$ does not have a unique solution

$$
\left(\begin{array}{ll}
1 & - \\
1 & - \\
1 & -
\end{array}\right)\binom{a}{b}=\left(\begin{array}{l}
4 \\
0 \\
1
\end{array}\right)
$$

(b) For the system below, give an example of a choice of vector \vec{b} for which the system is inconsistent.

$$
\left(\begin{array}{ll}
2 & 3 \\
0 & 0 \\
4 & 6
\end{array}\right) \vec{x}=\vec{b}=\binom{\square}{\square}
$$

(c) The dimension of the subspace of \mathbb{R}^{4} spanned by the vectors below is \qquad .

$$
\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right), \quad\left(\begin{array}{l}
1 \\
0 \\
0 \\
4
\end{array}\right), \quad\left(\begin{array}{c}
0 \\
-2 \\
-3 \\
0
\end{array}\right)
$$

(d) If $A=\left(\begin{array}{ll}\vec{a}_{1} & \vec{a}_{2}\end{array}\right)$ has $Q R$ factorization $Q R=\left(\begin{array}{ll}\vec{q}_{1} & \vec{q}_{2}\end{array}\right)\left(\begin{array}{ll}2 & 4 \\ 0 & 3\end{array}\right)$, the length of \vec{a}_{2} is \qquad .

Math 1554, Sample Final C. Your initials: \qquad
You do not need to justify your reasoning for questions on this page.
10. (4 points) Below is a SVD factorization for a matrix $A=U \Sigma V^{T}$, where

$$
U=\left[\begin{array}{ccc}
\vec{u}_{1} & \vec{u}_{2} & \vec{u}_{3}
\end{array}\right], \Sigma=\left[\begin{array}{ccccc}
5 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0
\end{array}\right], V=\left[\begin{array}{lllll}
\vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3} & \vec{v}_{4} & \vec{v}_{5}
\end{array}\right]
$$

Fill in the blanks.
(a) What is the rank of A ? \qquad
(b) What is the largest value of $\|A \vec{x}\|$, subject to $\|\vec{x}\|=1$? \qquad
(c) List an orthonormal basis for Null A. \qquad
(d) List an orthonormal basis for $\operatorname{Col} A$. \qquad
11. (6 points) If possible, give an example of the following. If it is not possible, write "not possible".
(a) A matrix, A, that is in echelon form, and

$$
\operatorname{dim}\left((\operatorname{Row}(A))^{\perp}\right)=3, \quad \operatorname{dim}\left((\operatorname{Col}(A))^{\perp}\right)=1
$$

(b) A 2×2 matrix in RREF, is diagonalizable, and is singular.
(c) A 2×3 matrix, A, in RREF, and $\operatorname{Null}(A)$ is spanned by $\vec{v}=\left(\begin{array}{c}-3 \\ 4 \\ 1\end{array}\right)$.

Math 1554, Sample Final C. Your initials:
12. (4 points) Calculate the least squares solution, \hat{x}, to the equation below. Don't forget to show your work.

$$
\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 1 & -1 \\
-1 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)
$$

Math 1554, Sample Final C. Your initials: \qquad
13. (2 points) What is the symmetric matrix A associated to the quadratic form below.

$$
x_{1}^{2}-9 x_{2}^{2}-x_{3}^{2}+16 x_{1} x_{3}
$$

14. (2 points) S is the parallelogram determined by $\vec{v}_{1}=\binom{2}{-2}$, and $\vec{v}_{2}=\binom{0}{1}$. If $A=$ $\left(\begin{array}{ll}1 & 3 \\ 4 & 2\end{array}\right)$, what is the area of the image of S under the map $\vec{x} \mapsto A \vec{x}$? Justify your reasoning.
15. (4 points) For what values of $\vec{b}=\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)$ is the system below consistent? Express your answer using parametric vector form. Justify your reasoning.

$$
\left(\begin{array}{ll}
0 & 4 \\
1 & 3 \\
2 & 2
\end{array}\right)\binom{x_{1}}{x_{2}}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

Math 1554, Sample Final C. Your initials: \qquad
16. (5 points) Consider the sequence of row operations that reduce matrix A to the identity.

$$
A=\underbrace{\left(\begin{array}{ccc}
-1 & 2 & 0 \\
1 & 0 & 0 \\
0 & 4 & 1
\end{array}\right)}_{A} \sim \underbrace{\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 2 & 0 \\
0 & 4 & 1
\end{array}\right)}_{E_{1} A} \sim \underbrace{\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 4 & 1
\end{array}\right)}_{E_{2} E_{1} A} \sim \underbrace{\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)}_{E_{3} E_{2} E_{1} A} \sim \underbrace{\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)}_{E_{4} E_{3} E_{2} E_{1} A}=I_{3}
$$

(i) Construct the four elementary matrices E_{1}, E_{2}, E_{3}, and E_{4}.
(ii) Consider the matrix products listed below. Which (if any) represents A, and which (if any) represents A^{-1} ?
(a) $E_{1}^{-1} E_{2}^{-1} E_{3}^{-1} E_{4}^{-1}$
(b) $E_{4} E_{3} E_{2} E_{1}$
(c) $E_{1} E_{2} E_{3} E_{4}$
(d) $E_{4}^{-1} E_{3}^{-1} E_{2}^{-1} E_{1}^{-1}$
17. (5 points) Let $A=\left(\begin{array}{ll}2 & 3 \\ 0 & 1\end{array}\right)$.
(i) State the eigenvalues and eigenspaces of A.
(ii) Draw the eigenspaces of A and label them with the corresponding eigenvalue.
(a) eigenspaces

Math 1554, Sample Final C. Your initials: \qquad
18. (4 points) If A is a matrix with independent columns, explain step by step how to find the $Q R$ factorization of A.
19. (3 points) Let $m>n$. Can n vectors span \mathbb{R}^{m} ? Explain your reasoning.
20. (3 points) Let A be an $m \times n$ matrix. Explain why the matrix $A^{T} A$ has non-negative eigenvalues.

SOLUTIONS

Your initials: \qquad
You do not need to explain your reasoning for questions on this page.

1. (6 points) Circle true if the statement is true, otherwise, circle false.
(a) A product of invertible matrices is also invertible.
true false
(b) Regardless what A and \vec{b} are, there is always at least one least-squares solution \hat{x} to $A \vec{x}=\vec{b}$.

(c) If $A \vec{x}_{0}=\vec{b}$, and $A \vec{y}=\overrightarrow{0}$, then $\vec{x}=\vec{x}_{0}-5 \vec{y}$ is a solution to $A \vec{x}=\vec{b}$.
true false
(d) An example of a quadratic form is the polynomial $7 x_{1}^{2}+5 x_{2}^{2}-10 x_{1} x_{2}+x_{2}$.
true
false
(e) If a matrix is invertible then it is also diagonalizable.
true false
(f) A $n \times n$ matrix A and its echelon form E have the same eigenvalues.
true false
2. (6 points) Circle possible if the set of conditions are create a situation that is possible, otherwise, circle impossible.
(a) The columns of matrix A are linearly independent, and $N u l l A^{T}$ is not trivial.

$$
\text { possible impossible eg } A=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)
$$

(b) A is $n \times n, \lambda \in \mathbb{R}$ is an eigenvalue of A, and $\operatorname{dim}\left(\operatorname{Col}(A-\lambda I)^{\perp}\right)=0$.
possible impossible
(c) Stochastic matrix P has zero entries and is regular.
possible impossible
(d) A is a square matrix that is not diagonalizable, but A^{2} is diagonalizable.

$$
\text { possible impossible } A=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), A^{2}=O_{2 \times 2}
$$

(e) A is $5 \times 4, A \vec{x}=\vec{b}$ has three free variables, and $\operatorname{dim}\left(\operatorname{Row}(A)^{\perp}\right)=3$.
possible impossible
(f) A $m \times n$ matrix A has linear transformation T_{A}. The map T_{A} can be one-to-one but not onto.
possible impossible $\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)$

You do not need to explain your reasoning for questions on this page.
3. (8 points) If possible, give an example of the following. If it is not possible, write "not possible".
(a) A matrix that is 2×4, in reduced echelon form, with the dimension of column space being 3 , and dimension of null space is 1 .
(1)
not possible
(b) A 3×4 matrix with orthonormal columns.
(1) not possible
(c) A 3×2 matrix A in reduced echelon form so that $A^{T} A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right) \quad \begin{aligned}
& \text { (1) } 3 \times L \text { and RREF } \\
& \text { (1) } A^{\top} A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

(for $A=\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right)$ give 1 point out of 2).
(d) A stochastic matrix for the Markov Chain below.

$$
P=\left(\begin{array}{cc}
.1 & .3 \\
.9 & .7
\end{array}\right) \text { or } P=\left(\begin{array}{ll}
.7 & .9 \\
.3 & .1
\end{array}\right)
$$

(1) 2×2 and stochastic
(1) Correct answer
(for $P=\left(\begin{array}{ll}.3 & .1 \\ .7 .9\end{array}\right)$ or $P=\left(\begin{array}{ll}.9 & .7 \\ .1 & .5\end{array}\right)$ give $/$ out of 2)
(e) A 2×2 matrix whose column space is the line $2 x_{1}+x_{2}=0$, and whose null space is the line $4 x_{1}-x_{2}=0$.
(2)

$$
\begin{aligned}
& \text { col } A=\operatorname{span}\left\{\binom{1}{-2}\right\}=\operatorname{span}\left\{\binom{4}{-8}\right\} \\
& \Rightarrow A=\left(\begin{array}{cc}
4 & -1 \\
-8 & +2
\end{array}\right)
\end{aligned}
$$

4. (10 points) A has exactly two distinct eigenvalues, which are -2 , and 1 .

$$
A=\left(\begin{array}{ccc}
0 & 1 & -1 \\
1 & 0 & 1 \\
-1 & 1 & 0
\end{array}\right)
$$

(a) Construct an eigenbasis for eigenvalue $\lambda=-2$.

$$
A-(-2) I=\left(\begin{array}{ccc}
2 & 1 & -1 \\
1 & 2 & 1 \\
-1 & 1 & 2
\end{array}\right) \sim\left(\begin{array}{ccc}
0 & 3 & 3 \\
0 & 3 & 3 \\
1 & -1 & -2
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1
\end{array}\right)
$$

$$
\Rightarrow \vec{v}_{1}=\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)
$$

(1) show work, and $A+2 I$
(1) answer
(b) Construct an eigenbasis for eigenvalue $\lambda=1$.

$$
\begin{gathered}
A-(+1) I=\left(\begin{array}{ccc}
-1 & 1 & -1 \\
1 & -1 & 1 \\
-1 & 1 & -1
\end{array}\right) \sim\left(\begin{array}{cc}
1 & -1 \\
\end{array}\right) \\
\Rightarrow \vec{v}_{2}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), \quad \overrightarrow{\vec{v}_{3}}=\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)
\end{gathered}
$$

(b) shaw wat, $A-I$
(2) eigenvectors
(c) If possible, construct matrices P and D such that $A=P D P^{T}$, and P is a matrix with orthongel columns, D is diagonal.

$$
\hat{v}_{3}=\vec{v}_{3}-\overline{\frac{v_{2} \cdot v_{3}}{v_{2} \cdot v_{2}}} v_{2}=\left(\begin{array}{c}
-1 \tag{1}\\
0 \\
1
\end{array}\right)-\frac{-1}{2}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
-1 / 2 \\
+1 / 2 \\
1
\end{array}\right)
$$ Schmidt

can use $\frac{1}{\sqrt{6}}\left(\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right)$

$$
\begin{aligned}
& \text { can use } \sqrt{6}(2) \\
& \Rightarrow P=\left(\begin{array}{ccc}
1 / \sqrt{3} & 1 / \sqrt{2} & -1 / \sqrt{6} \\
-1 / \sqrt{3} & 1 / \sqrt{2} & 1 / \sqrt{6} \\
1 / \sqrt{3} & 0 & 2 / \sqrt{6}
\end{array}\right)
\end{aligned}
$$

(1) normalizing
(1) orthogonal matrix

$$
D=\left(\begin{array}{ccc}
-2 & & \\
& 1 & \\
& & 1
\end{array}\right)
$$

(1) diagonal 3×3
(1) eigens match
(For distance (high school) exams, 5 points on (c) for $P=I \operatorname{and} D=A$.)
5. (10 points) Construct the singular value decomposition of $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)$.

- $A^{\top} A=\left(\begin{array}{lll}0 & 1 \\ 0 & 1\end{array}\right)\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)$
(I) correct
- eigenvalues of $A^{\top} A$ are, by inspection, $\lambda=0,1,2$
(1) all correct
- $\Sigma=\left(\begin{array}{ccc}\sqrt{2} & 0 & 0 \\ 0 & 1 & 0\end{array}\right)\left(\begin{array}{c}n_{0} t \\ \end{array}\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \sqrt{2} & 0\end{array}\right)\right.$ and $\left.\operatorname{not}\left(\begin{array}{cc}\sqrt{2} & 0 \\ 0 & 1\end{array}\right)\right)$
(1) Σ is 2×3
(1) elements
(-1) for no work
$V_{\text {Matrix }}$ shown to detain

$$
\begin{aligned}
& \lambda=0: A^{\top} A-O I=\left(\begin{array}{ll}
1 & 0 \\
0 & 0 \\
1 & 0
\end{array}\right) \Rightarrow v_{3}=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right) \\
& \lambda_{2}=1: A^{\top} A-1 I=\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0
\end{array}\right) \Rightarrow v_{i}=\binom{0}{0} \\
& \lambda_{1}=2: A^{\top} A-2 I=\left(\begin{array}{ccc}
-1 & 0 \\
0 & -1 & 0 \\
10 & -1
\end{array}\right) \Rightarrow v_{1}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

(1) orthonormal colvanas and 3×3

4 MATRiX

$$
\begin{aligned}
& u_{1}=\frac{1}{\sigma_{1}} A v_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{1}{1}\left(\begin{array}{l}
1 \cdot \sqrt{2}
\end{array}\right)=\binom{0}{1} \\
& u_{2}=\frac{1}{\sigma_{2}} A v_{2}=\frac{1}{1}\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)\binom{0}{0}=\binom{1}{0} \\
& \Rightarrow U=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \operatorname{NOT}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

\sum work shown and
(1) ql correct (E1) for na moyle
(1) for U
$\Rightarrow A=U \sum V^{\top}, U, \sum, V$ as above
(1) this statement necessary.
6. (6 points) Circle true if the statement is true, otherwise, circle false. You do not need to explain your reasoning.
(a) For any $n \times n$ matrix A, and non-zero vectors x and y with $A x=2 x$ and $A y=3 y$, then x and y are orthogonal.
true
false
(b) A $n \times n$ matrix A and A^{T} have the same eigenvectors. true false
(c) For two matrices A, B, if the product $A B$ is defined, then $(A B)^{T}=A^{T} B^{T}$. true false
(d) If $\vec{x}, \vec{y} \in \mathbb{R}^{n}$, then the span of $\{\vec{x}, \vec{y}\}$ is equal to the span of $\{\vec{x}, \vec{x}-\vec{y}\}$.

(e) This is a subspace of $\mathbb{R}^{3}: H=\left\{\vec{x} \in \mathbb{R}^{3}: x_{1}-x_{2}+x_{3}=1\right\}$
true false
(f) For any matrix A, if $x \in \operatorname{Col} A$, and $y \in \operatorname{Null} A$, then $x^{T} y=0$.
true false
7. (4 points) Circle possible if the set of conditions are create a situation that is possible, otherwise, circle impossible. You don't need to explain your reasoning.
(a) Matrix A is $5 \times 10, b \in \mathbb{R}^{5}$, and $A x=b$ has a unique solution.

> possible impossible
(b) Matrix A has echelon form E, and $\operatorname{Null} A \neq \operatorname{Null} E$.
possible impossible
(c) Matrix A has a null space of dimension 1, and the linear transformation T_{A} is one to one.
possible impossible
(d) Matrix A is 3×4 and has orthonormal columns.

if student witios ($\left.\begin{array}{l}5 \\ 0 \\ 0\end{array}\right)$ fo H , and $\left(\begin{array}{l}0 \\ \vdots \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 8 \\ 0\end{array}\right),\left(\begin{array}{c}-1 \\ 0 \\ 8\end{array}\right)$ for $H^{\perp}, 3$ points You do not need to explain your reasoning for questions on this page.
8. (4 points) $H=\left\{\vec{x} \in \mathbb{R}^{4}: x_{1}=5 x_{4}\right\}$.
(a) Write down a basis for H.

2

(student can ret k to be anything, mort will use $k=0$)
(1) correct everything
(i) a vector that is in H

(1) exactly are vector in \mathbb{R}^{4}

$$
\left(\text { con alto use }\left(\frac{-i}{(-1}\right)^{10}\right)^{10} \text { correct everything }
$$

9. (4 points) Fill in the blanks.
(a) Complete the matrix below so that the least squares solution to $A x=b$ does not have a unique solution

$$
\left(\begin{array}{ll}
1 & \frac{k}{k} \\
1 & \frac{k}{k}
\end{array}\right)\binom{a}{b}=\left(\begin{array}{l}
4 \\
0 \\
1
\end{array}\right)
$$

A must have linearly dependent columns
(k can be anything)
(b) Fer the system below, give an example of a choice of vector \vec{b} for which the system is inconsistent.
(1)
(1)

(d) If $A=\left(\begin{array}{ll}\vec{a}_{1} & \vec{a}_{2}\end{array}\right)$ has $Q R$ factorization $Q R=\left(\begin{array}{ll}\overrightarrow{q_{1}} & \vec{q}_{2}\end{array}\right)\left(\begin{array}{ll}2 & 4 \\ 0 & 3\end{array}\right)$, the length
 of \vec{a}_{2} is 5 .

You do not need to explain your reasoning for questions on this page.
$/ 5$
10. (4 points) Below is a SVD factorization for a matrix $A=U \Sigma V^{T}$, where

$$
U=\left[\begin{array}{lll}
\vec{u}_{1} & \vec{u}_{2} & \vec{u}_{3}
\end{array}\right], \Sigma=\left[\begin{array}{lllll}
5 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0
\end{array}\right], V=\left[\begin{array}{lllll}
\vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3} & \vec{v}_{4} & \vec{v}_{5}
\end{array}\right]
$$

Fill in the blanks.
(1) (a) What is the rank of A ? \qquad 3
(1) (b) What is the largest value of $\|A \vec{x}\|$, subject to $\|\vec{x}\|=1$? \qquad no half
(1) (c) List an orthonormal basis for Null A. \qquad V_{4}, V_{5} points
(
(d) List an orthonormal basis for $\mathrm{Col} A$. \qquad u_{1}, u_{n}, u_{3} 6
11. (6 points) If possible, give an example of the following. If it is not possible, write "not possible".
(a) A matrix, A, that is in echelon form, and $\quad C o / A \perp=N u \| A^{\top}$

$$
\operatorname{dim}\left((\operatorname{Row}(A))^{\perp}\right)=3, \quad \operatorname{dim}\left((\operatorname{Col}(A))^{\perp}\right)=1
$$

(2)

$$
\begin{aligned}
& \left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \operatorname{or}\left(\begin{array}{lll}
0 & 0 & 0
\end{array}\right), \operatorname{or}\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \operatorname{or}\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0
\end{array}\right), \ldots
\end{aligned}
$$

(b) A 2×2 matrix in RREF, is diagonalizable, and is singular. the only correct answers are $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$
(2)
$\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ is not diagnalizable, give 1 point
(c) A 2×3 matrix, A, in RREF, and $\operatorname{Null}(A)$ is spanned by $\vec{v}=\left(\begin{array}{c}-3 \\ 4 \\ 1\end{array}\right)$.

$$
\left(\begin{array}{rrr}
1 & 0 & 3 \\
0 & 1 & -4
\end{array}\right)
$$

(1) RREF and 2×3
(2) two pivots and

$$
\vec{v} \in \operatorname{Null} A
$$

Common error: $\left(\begin{array}{lll}1 & 0 & -3 \\ 0 & 1 & -4\end{array}\right)$ worth (1) point
12. (4 points) Calculate the least squares solution, \hat{x}, to the equation below. Don't forget to show your work.

$$
A x=b=\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 1 & -1 \\
-1 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)
$$

$$
\hat{x}=\left(\begin{array}{c}
0 \\
1 / 4 \\
1 / 2
\end{array}\right)\left\{\begin{array}{l}
\text { students } \\
\text { don't } \\
\text { actually have }
\end{array}\right.
$$

METHOD 1 to fill this ant
Columns ace orthogonal.
(1) recognized can use dot

$$
\begin{aligned}
\operatorname{proj}_{\operatorname{cdA}}^{b} & =\frac{b \cdot a_{1}}{a_{1} \cdot a_{1}} a_{1}+\frac{b \cdot a_{2}}{a_{2} \cdot a_{2}} a_{2}+\frac{b \cdot a_{3}}{a_{3} \cdot a_{3}} a_{3} \\
& \left.=0 a_{1}+\frac{1}{4} a_{2}+\frac{1}{2} a_{3}\right\} \text { (1) used } \\
\Rightarrow \hat{x} & =\left(\begin{array}{c}
0 \\
1 / 4 \\
1 / 2
\end{array}\right)
\end{aligned}
$$

(1) used correct
dot products

METHOD 2

$$
\left.\begin{array}{rl}
A^{\top} A \hat{x} & =A^{\top} b \\
\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
1 & 1 & 1 & 1 \\
0 & 1 & -1 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 1 & -1 \\
-1 & 1 & 0
\end{array}\right) \hat{x} & =\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
1 & 1 & 1 & 1 \\
0 & 1 & -1 & 0
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) \\
\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 2
\end{array}\right) \hat{x} & =\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \\
\Rightarrow & \hat{x}
\end{array}\right)=\left(\begin{array}{c}
0 \\
1 / 4 \\
1 / 2
\end{array}\right), ~ \$
$$

(1) normal equations, correct
(1) substitution
(2) al ge bra and correct answer.

METHOD 3: QR: I doubt many students will $Q R$ it.
ME TroD 4: row reducing $A_{x}=6$ should get zero points.
13. (2 points) What is the symmetric matrix A associated to the quadratic form below.

$$
x_{1}^{2}-9 x_{2}^{2}-x_{3}^{2}+16 x_{1} x_{3}
$$

$$
A=\left(\begin{array}{ccc}
1 & 0 & 8 \\
0 & -9 & 0 \\
8 & 0 & -1
\end{array}\right)
$$

(1) main diagonal elements all correct
(1) off ding loments all correct

914
4. (2 points) S is the parallelogram determined by $\vec{v}_{1}=\binom{2}{-2}$, and $\vec{v}_{2}=\binom{0}{1}$. If $A=\left(\begin{array}{ll}1 & 3 \\ 4 & 2\end{array}\right)$, what is the area of the image of S under the map $\vec{x} \mapsto A \vec{x}$? Justify your reasoning.
area of S under map $=\left|\operatorname{det} A \operatorname{det}\left(\begin{array}{cc}2 & 0 \\ -2 & 1\end{array}\right)\right|=|-10 \cdot 2|=20$ or: $\left(\left.\operatorname{det}\left(A \cdot\left(\begin{array}{cc}2 & 0 \\ -2 & 1\end{array}\right)\right) /=\operatorname{det}\left(\begin{array}{cc}-4 & 3 \\ 4 & 2\end{array}\right) \right\rvert\,=20\right.$
15. (4 points) For what values of $\vec{b}=\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)$ is the system below consistent? Express your answer using parametric vector form. Justify your reasoning.

$$
\begin{aligned}
& \left(\begin{array}{ll}
0 & 4 \\
1 & 3 \\
2 & 2
\end{array}\right)\binom{x_{1}}{x_{2}}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) \\
& \left(\begin{array}{ll|l}
0 & 4 & b_{1} \\
1 & 3 & b_{2} \\
2 & 2 & b_{3}
\end{array}\right) \sim\left(\begin{array}{cc|c}
0 & 4 & b_{1} \\
1 & 3 & b_{2} \\
0 & -4 & b_{3}-2 b_{2}
\end{array}\right) \sim\left(\begin{array}{cc|c}
6 & 3 & b_{2} \\
0 & 4 & b_{1} \\
0 & 0 & b_{3}-2 b_{2}+b_{1}
\end{array}\right) \\
& \text { (1) Knowing row reductions } \\
& \text { were necessary } \\
& \Rightarrow b_{3}-2 b_{2}+b_{1}=0 \\
& \Rightarrow \vec{b}=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)=\left(\begin{array}{c}
2 b_{2} \\
b_{2} \\
b_{3} \\
b_{3}
\end{array}\right)=b_{2}\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right)+b_{3}\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right) \\
& \text { (1) algebra to this step } \\
& \text { something in } \\
& \text { vector form } \\
& \text { (1) crest } \\
& \text { This doesn't } \\
& \text { answer the question, } \\
& \text { give to most } \\
& \text { two points. }
\end{aligned}
$$

Solutions

16) Consider the sequence of row operations that reduce matrix A to the identity.

$$
A=\underbrace{\left(\begin{array}{ccc}
-1 & 2 & 0 \\
1 & 0 & 0 \\
0 & 4 & 1
\end{array}\right)}_{A} \sim \underbrace{\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 2 & 0 \\
0 & 4 & 1
\end{array}\right)}_{E_{1} A} \sim \underbrace{\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 4 & 1
\end{array}\right)}_{E_{2} E_{1} A} \sim \underbrace{\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)}_{E_{3} E_{2} E_{1} A} \sim \underbrace{\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)}_{E_{4} E_{3} E_{2} E_{1} A}=I_{3}
$$

(i) Construct the four elementary matrices E_{1}, E_{2}, E_{3}, and E_{4}.

$$
E_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), E_{2}=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), E_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0.5 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

(ii) Consider the matrix products listed below. Which (if any) represents A, and which (if any) represents A^{-1} ?
i. $E_{1}^{-1} E_{2}^{-1} E_{3}^{-1} E_{4}^{-1}$
ii. $E_{4} E_{3} E_{2} E_{1}$
iii. $E_{1} E_{2} E_{3} E_{4}$
iv. $E_{4}^{-1} E_{3}^{-1} E_{2}^{-1} E_{1}^{-1}$
$A=E_{1}^{-1} E_{2}^{-1} E_{3}^{-1} E_{4}^{-1}$, and $A^{-1}=E_{4} E_{3} E_{2} E_{1}$.
17) Let $A=\left(\begin{array}{ll}2 & 3 \\ 0 & 1\end{array}\right)$.
(i) State the eigenvalues and eigenspaces of A.
$\lambda_{1}=2, \lambda_{2}=1$
λ_{1}-eigenspace is $\operatorname{Span}\left\{\binom{1}{0}\right\}, \lambda_{2}$-eigenspace is $\operatorname{Span}\left\{\binom{3}{-1}\right\}$
(ii) Draw the eigenspaces of A and label them with the corresponding eigenvalue.

18) To create Q, Gram-Schmidt vectors, normalize each vector so they all have unit length, place vectors into matrix. To create R, compute $R=Q^{T} A$.
19) Place vectors into a matrix. The matrix will be $m \times n$. Because $n<m$, the matrix has at most n pivots. The dimension of the column space of the matrix is at most n, which means the vectors cannot span \mathbb{R}^{m}.
20) Let v_{j} be an eigenvector of \mathbf{A}^{\wedge} TA

$$
\left\|A v_{j}\right\|=A v_{j} \cdot A v_{j}=v_{j}^{T} A^{T} A v_{j}=\lambda_{j} v_{j} \cdot v_{j}=\lambda_{j}\|v j\|^{\wedge} 2
$$

Therefore all eigenvalues are positive or zero, but never negative.

