Sample Final C, Math 1554

PLEASE PRINT YOUR NAME CLEARLY IN ALL CAPITAL LETTERS

First Name _____ Last Name _____

GTID Number:

Student GT Email Address: ______@gatech.edu

Section Number (e.g. A4, QH3, etc.) _____ TA Name _____

Student Instructions

- Show your work and justify your answers for all questions unless stated otherwise.
- Organize your work in a reasonably neat and coherent way.
- Calculators, notes, cell phones, books are not allowed.
- Use dark and clear writing: your exam will be scanned into a digital system.
- Exam pages are double sided. Be sure to complete both sides.
- Leave a 1 inch border around the edges of exams.
- Any work done on scratch paper will not be collected and will not be graded.

You do not need to justify your reasoning for questions on this page.

- 1. (6 points) Circle **true** if the statement is true, otherwise, circle **false**.
 - (a) A product of invertible matrices is also invertible.

true false

(b) Regardless what A and \vec{b} are, there is always at least one least-squares solution \hat{x} to $A\vec{x} = \vec{b}$. Assume A is mxn and b is in R^m so that Ax=b is defined.

true false

(c) If $A\vec{x}_0 = \vec{b}$, and $A\vec{y} = \vec{0}$, then $\vec{x} = \vec{x}_0 - 5\vec{y}$ is a solution to $A\vec{x} = \vec{b}$.

true false

(d) An example of a quadratic form is the polynomial $7x_1^2 + 5x_2^2 - 10x_1x_2 + x_2$.

true false

(e) If a matrix is invertible then it is also diagonalizable.

true false

(f) A $n \times n$ matrix A and its echelon form E have the same eigenvalues.

true false

- 2. (6 points) Circle **possible** if the set of conditions are create a situation that is possible, otherwise, circle **impossible**.
 - (a) The columns of matrix A are linearly independent, and $NullA^T$ is not trivial.

possible impossible

(b) A is $n \times n$, $\lambda \in \mathbb{R}$ is an eigenvalue of A, and dim $(\operatorname{Col}(A - \lambda I)^{\perp}) = 0$.

possible impossible

(c) Stochastic matrix P has zero entries and is regular.

possible impossible

(d) A is a square matrix that is not diagonalizable, but A^2 is diagonalizable.

possible impossible

(e) A is 5×4 , $A\vec{x} = \vec{b}$ has three free variables, and dim $(\text{Row}(A)^{\perp}) = 3$.

possible impossible

(f) A $m \times n$ matrix A has linear transformation T_A . The map T_A can be one-to-one but not onto.

possible impossible

You do not need to explain your reasoning for questions on this page.

- 3. (8 points) If possible, give an example of the following. If it is not possible, write "not possible".
 - (a) A matrix that is 2×4 , in reduced echelon form, with the dimension of column space being 3, and dimension of null space is 1.
 - (b) A 3×4 matrix with orthonormal columns.
 - (c) A 3 × 2 matrix A in reduced echelon form so that $A^T A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

(d) A stochastic matrix for the Markov Chain below.

(e) A 2 × 2 matrix whose column space is the line $2x_1 + x_2 = 0$, and whose null space is the line $4x_1 - x_2 = 0$.

4. (10 points) A has exactly two distinct eigenvalues, which are -2, and 1.

$$A = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix}$$

(a) Construct an eigenbasis for eigenvalue $\lambda = -2$.

(b) Construct an eigenbasis for eigenvalue $\lambda = 1$.

(c) If possible, construct matrices P and D such that $A = PDP^T$, and P is a matrix with orthonormal columns and D is a diagonal matrix.

5. (10 points) Construct the singular value decomposition of $A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$.

- 6. (6 points) Circle **true** if the statement is true, otherwise, circle **false**. You do not need to explain your reasoning.
 - (a) For any $n \times n$ matrix A, and non-zero vectors x and y with Ax = 2x and Ay = 3y, then x and y are orthogonal.

true false

(b) A $n \times n$ matrix A and A^T have the same eigenvectors.

true false

(c) For two matrices A, B, if the product AB is defined, then $(AB)^T = A^T B^T$.

true

true false

(d) If $\vec{x}, \vec{y} \in \mathbb{R}^n$, then the span of $\{\vec{x}, \vec{y}\}$ is equal to the span of $\{\vec{x}, \vec{x} - \vec{y}\}$.

true false

(e) This is a subspace of \mathbb{R}^3 : $H = \{\vec{x} \in \mathbb{R}^3 : x_1 - x_2 + x_3 = 1\}$

false

(f) For any matrix A, if $x \in \text{Col}A$, and $y \in \text{Null}A$, then $x^T y = 0$.

true false

- 7. (4 points) Circle **possible** if the set of conditions are create a situation that is possible, otherwise, circle **impossible**. You don't need to explain your reasoning.
 - (a) Matrix A is 5×10 , $b \in \mathbb{R}^5$, and Ax = b has a unique solution.

possible impossible

(b) Matrix A has echelon form E, and Null $A \neq$ NullE.

possible impossible

(c) Matrix A has a null space of dimension 1, and the linear transformation T_A is one to one.

possible impossible

(d) Matrix A is 3×4 and has orthonormal columns.

possible impossible

You do not need to explain your reasoning for questions on this page.

- 8. (4 points) $H = \{ \vec{x} \in \mathbb{R}^4 : x_1 = 5x_4 \}.$
 - (a) Write down a basis for H.

(b) Write down a basis for H^{\perp} .

- 9. (4 points) Fill in the blanks.
 - (a) Complete the matrix below so that the least squares solution to Ax = b does not have a unique solution

$$\begin{pmatrix} 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix}$$

(b) For the system below, give an example of a choice of vector \vec{b} for which the system is inconsistent.

$$\begin{pmatrix} 2 & 3\\ 0 & 0\\ 4 & 6 \end{pmatrix} \vec{x} = \vec{b} = \begin{pmatrix} ----\\ ---- \end{pmatrix}$$

(c) The dimension of the subspace of \mathbb{R}^4 spanned by the vectors below is _____.

$$\begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}, \quad \begin{pmatrix} 1\\0\\0\\4 \end{pmatrix}, \quad \begin{pmatrix} 0\\-2\\-3\\0 \end{pmatrix}$$

(d) If $A = \begin{pmatrix} \vec{a_1} & \vec{a_2} \end{pmatrix}$ has QR factorization $QR = \begin{pmatrix} \vec{q_1} & \vec{q_2} \end{pmatrix} \begin{pmatrix} 2 & 4 \\ 0 & 3 \end{pmatrix}$, the length of $\vec{a_2}$ is _____.

Math 1554, Sample Final C. Your initials: _____ You do not need to justify your reasoning for questions on this page.

10. (4 points) Below is a SVD factorization for a matrix $A = U\Sigma V^T$, where

$$U = \begin{bmatrix} \vec{u}_1 & \vec{u}_2 & \vec{u}_3 \end{bmatrix}, \ \Sigma = \begin{bmatrix} 5 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \end{bmatrix}, \ V = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 & \vec{v}_4 & \vec{v}_5 \end{bmatrix}$$

Fill in the blanks.

- (a) What is the rank of A?
- (b) What is the largest value of $||A\vec{x}||$, subject to $||\vec{x}|| = 1$?
- (c) List an orthonormal basis for NullA.
- (d) List an orthonormal basis for ColA.
- 11. (6 points) If possible, give an example of the following. If it is not possible, write "not possible".
 - (a) A matrix, A, that is in echelon form, and

dim
$$((\operatorname{Row}(A))^{\perp}) = 3,$$
 dim $((\operatorname{Col}(A))^{\perp}) = 1$

(b) A 2×2 matrix in RREF, is diagonalizable, and is singular.

(c) A 2 × 3 matrix, A, in RREF, and Null(A) is spanned by $\vec{v} = \begin{pmatrix} -3 \\ 4 \\ 1 \end{pmatrix}$.

12. (4 points) Calculate the least squares solution, \hat{x} , to the equation below. Don't forget to show your work.

13. (2 points) What is the symmetric matrix A associated to the quadratic form below.

$$x_1^2 - 9x_2^2 - x_3^2 + 16x_1x_3$$

14. (2 points) S is the parallelogram determined by $\vec{v}_1 = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$, and $\vec{v}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. If $A = \begin{pmatrix} 1 & 3 \\ 4 & 2 \end{pmatrix}$, what is the area of the image of S under the map $\vec{x} \mapsto A\vec{x}$? Justify your reasoning.

15. (4 points) For what values of $\vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ is the system below consistent? Express your answer using parametric vector form. Justify your reasoning.

$$\begin{pmatrix} 0 & 4 \\ 1 & 3 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

16. (5 points) Consider the sequence of row operations that reduce matrix A to the identity.

$$A = \underbrace{\begin{pmatrix} -1 & 2 & 0\\ 1 & 0 & 0\\ 0 & 4 & 1 \end{pmatrix}}_{A} \sim \underbrace{\begin{pmatrix} 1 & 0 & 0\\ -1 & 2 & 0\\ 0 & 4 & 1 \end{pmatrix}}_{E_{1}A} \sim \underbrace{\begin{pmatrix} 1 & 0 & 0\\ 0 & 2 & 0\\ 0 & 4 & 1 \end{pmatrix}}_{E_{2}E_{1}A} \sim \underbrace{\begin{pmatrix} 1 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 1 \end{pmatrix}}_{E_{3}E_{2}E_{1}A} \sim \underbrace{\begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}}_{E_{4}E_{3}E_{2}E_{1}A} = I_{3}$$

(i) Construct the four elementary matrices E_1 , E_2 , E_3 , and E_4 .

- (ii) Consider the matrix products listed below. Which (if any) represents A, and which (if any) represents A^{-1} ?
 - (a) $E_1^{-1}E_2^{-1}E_3^{-1}E_4^{-1}$
 - (b) $E_4 E_3 E_2 E_1$
 - (c) $E_1 E_2 E_3 E_4$
 - (d) $E_4^{-1}E_3^{-1}E_2^{-1}E_1^{-1}$

17. (5 points) Let $A = \begin{pmatrix} 2 & 3 \\ 0 & 1 \end{pmatrix}$.

(i) State the eigenvalues and eigenspaces of A.

(ii) Draw the eigenspaces of A and label them with the corresponding eigenvalue.

18. (4 points) If A is a matrix with independent columns, explain step by step how to find the QR factorization of A.

19. (3 points) Let m > n. Can n vectors span \mathbb{R}^m ? Explain your reasoning.

20. (3 points) Let A be an $m \times n$ matrix. Explain why the matrix $A^T A$ has non-negative eigenvalues.

SOLUTION 5

Your initials: _____

You do not need to explain your reasoning for questions on this page.

- 1. (6 points) Circle **true** if the statement is true, otherwise, circle **false**.
 - (a) A product of invertible matrices is also invertible.

true false (b) Regardless what A and \vec{b} are, there is always at least one least-squares solution \hat{x} to $A\vec{x} = \vec{b}$. (true) false (c) If $A\vec{x}_0 = \vec{b}$, and $A\vec{y} = \vec{0}$, then $\vec{x} = \vec{x}_0 - 5\vec{y}$ is a solution to $A\vec{x} = \vec{b}$. true false (d) An example of a quadratic form is the polynomial $7x_1^2 + 5x_2^2 - 10x_1x_2 + x_2$. true (false) (e) If a matrix is invertible then it is also diagonalizable. (false) true (f) A $n \times n$ matrix A and its echelon form E have the same eigenvalues. false) true 2. (6 points) Circle possible if the set of conditions are create a situation that is possible, otherwise, circle impossible. (a) The columns of matrix A are linearly independent, and $\text{Null}A^T$ is not trivial. eq A= (:) impossible (possible) (b) A is $n \times n$, $\lambda \in \mathbb{R}$ is an eigenvalue of A, and dim $(\operatorname{Col}(A - \lambda I)^{\perp}) = 0$. possible impossible (c) Stochastic matrix P has zero entries and is regular. (possible) impossible (d) A is a square matrix that is not diagonalizable, but A^2 is diagonalizable. impossible $A = \begin{pmatrix} \circ & \cdot \\ \circ & \bullet \end{pmatrix}$, $A^2 = O_{1\times 1}$ (possible) (e) A is 5×4 , $A\vec{x} = \vec{b}$ has three free variables, and dim $(\text{Row}(A)^{\perp}) = 3$. (possible) impossible (f) A $m \times n$ matrix A has linear transformation T_A . The map T_A can be

possible

 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$

impossible

one-to-one but not onto.

You do not need to explain your reasoning for questions on this page.

- 3. (8 points) If possible, give an example of the following. If it is not possible, write "not possible".
 - (a) A matrix that is 2×4 , in reduced echelon form, with the dimension of column space being 3, and dimension of null space is 1.

l

1

(b) A 3×4 matrix with orthonormal columns.

4. (10 points) A has exactly two distinct eigenvalues, which are -2, and 1.

$$A = \begin{pmatrix} 0 & 1 & -1 \\ 1 & \mathbf{Q} & 1 \\ -1 & 1 & 0 \end{pmatrix}$$

(b) Construct an eigenbasis for eigenvalue
$$\lambda = 1$$
.
 $A - (+1)I = \begin{pmatrix} -1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$

 $\Rightarrow \overline{V_2} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \qquad \overline{V_3} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$

 $\overrightarrow{V_3} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$

(c) If possible, construct matrices P and D such that $A = PDP^{T}$, and P is a matrix with orthogonal columns, D is diagonal.

.

$$\widehat{\nabla_3} = \overline{V_3} - \frac{V_2 \cdot V_3}{V_2 \cdot V_2} V_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix} - \frac{-1}{2} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1/2 \\ +1/2 \\ 1 \end{pmatrix}, \quad (1) \quad Gram \\ Schmidt$$

can use
$$\frac{1}{\sqrt{6}} \begin{pmatrix} -1\\ 2 \end{pmatrix}$$

=) $P = \begin{pmatrix} 1/\sqrt{3} & \sqrt{42} & -1/\sqrt{6} \\ -1/\sqrt{3} & \sqrt{42} & 1/\sqrt{6} \\ 1/\sqrt{3} & 0 & 2/\sqrt{6} \end{pmatrix}$ (1) or thogonal matrix
 $1/\sqrt{3} & 0 & 2/\sqrt{6}$) (1) diagonal 3×3
(1) diagonal 3×3
(1) diagonal 3×3
(1) eigens match
(5) For distance (high school) exams, 5 points on (c) for P=I and D=A.)

5. (10 points) Construct the singular value decomposition of
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
.
• $A^{T}A = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ (1) correct
• eigenvalues of ATA are, by inspection, $\lambda = 0, 1, 2$ (1) all correct
• $\mathcal{L} = \begin{pmatrix} \sqrt{12} & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} not & \begin{pmatrix} 1 & 0 & 0 \\ 0 & \sqrt{2} & 0 \end{pmatrix}$ and not $\begin{pmatrix} \sqrt{12} & 0 \\ 0 & 1 \end{pmatrix}$ (2) \mathcal{L} is 2×3
• $\mathcal{L} = \begin{pmatrix} \sqrt{12} & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} not & \begin{pmatrix} 1 & 0 & 0 \\ 0 & \sqrt{2} & 0 \end{pmatrix}$ and not $\begin{pmatrix} \sqrt{12} & 0 \\ 0 & 1 \end{pmatrix}$ (2) \mathcal{L} is 2×3
• $\mathcal{L} = \begin{pmatrix} \sqrt{12} & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} not & \begin{pmatrix} 0 & \sqrt{2} & 0 \\ 0 & \sqrt{2} & 0 \end{pmatrix} \text{ and not} \begin{pmatrix} \sqrt{12} & 0 \\ 0 & 1 \end{pmatrix}$ (2) elements
• \mathcal{L} is a value of the transformed of the transfo

$$\begin{array}{l} \mathcal{U} \quad MATRUX \\ \mathcal{U}_{i} = \frac{1}{\sigma_{i}} A v_{i} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 10 \\ 1 & 01 \end{pmatrix} \begin{pmatrix} 1 & 10 \\ 1 & 10 \end{pmatrix} \begin{pmatrix} 1 & 10 \\ 1 & 10 \end{pmatrix} \begin{pmatrix} 1 & 10 \\ 1 & 10 \end{pmatrix} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array}$$
 \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 0 \\ \end{array} \\ \begin{array}{l} \mathcal{U}_{i} = \begin{pmatrix} 0 \\ 0

=> A = UEVT, UE, Vas above () this statement necessary.

- 6. (6 points) Circle **true** if the statement is true, otherwise, circle **false**. You do not need to explain your reasoning.
 - (a) For any $n \times n$ matrix A, and non-zero vectors x and y with Ax = 2x and Ay = 3y, then x and y are orthogonal.

- 7. (4 points) Circle **possible** if the set of conditions are create a situation that is possible, otherwise, circle **impossible**. You don't need to explain your reasoning.
 - (a) Matrix A is 5×10 , $b \in \mathbb{R}^5$, and Ax = b has a unique solution.

possible (impossible)

(b) Matrix A has echelon form E, and $\text{Null}A \neq \text{Null}E$.

possible impossible

(c) Matrix A has a null space of dimension 1, and the linear transformation T_A is one to one.

impossible

(d) Matrix A is 3×4 and has orthonormal columns.

possible

possible

impossible

if student writes (\$) for H, and (i), (i), (i), (i) for H, 3 ponts You do not need to explain your reasoning for questions on this page. 8. (4 points) $H = \{ \vec{x} \in \mathbb{R}^4 : x_1 = 5x_4 \}.$ (a) Write down a basis for H. (student can set k to be anything, most will use k=0) (b) Write down a basis for H^{\perp} . $\begin{pmatrix} 0\\ 0\\ -5 \end{pmatrix}$ $\begin{pmatrix} 0\\ -5 \end{pmatrix}$ $\begin{pmatrix} 0\\ con also use \begin{pmatrix} -i\\ s \end{pmatrix} \end{pmatrix}$ $\begin{pmatrix} 0\\ correct everything \end{pmatrix}$ 9. (4 points) Fill in the blank (a) Complete the matrix below so that the least squares solution to Ax = bdoes not have a unique solution $\begin{pmatrix} 1 & \frac{k}{k} \\ 1 & \frac{k}{k} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} \qquad A must have$ linearly dependentcolumns $(b) For the system below, give an example of a choice of vector <math>\vec{b}$ for which the system is inconsistent. $\begin{pmatrix} 2 & 3 \\ 0 & 0 \\ 4 & 6 \end{pmatrix} \vec{x} = \vec{b} = \begin{pmatrix} \frac{\pi}{1} \\ \frac{\pi}{2} \end{pmatrix} \leftarrow \text{ that element must}$ $\begin{pmatrix} x = \text{ does not metter} \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 0 & 0 \\ 4 & 6 \end{pmatrix} \vec{x} = \vec{b} = \begin{pmatrix} \frac{\pi}{1} \\ \frac{\pi}{2} \end{pmatrix} \leftarrow \text{ that element must}$ (c) The dimension of the subspace of \mathbb{R}^4 spanned by the vectors below is 2. $\begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}, \quad \begin{pmatrix} 1\\0\\0\\4 \end{pmatrix}, \quad \begin{pmatrix} 0\\-2\\-3\\-3 \end{pmatrix}$ ۱ (d) If $A = \begin{pmatrix} \vec{a}_1 & \vec{a}_2 \end{pmatrix}$ has QR factorization $QR = \begin{pmatrix} \vec{q}_1 & \vec{q}_2 \end{pmatrix} \begin{pmatrix} 2 & 4 \\ 0 & 3 \end{pmatrix}$, the length of \vec{a}_2 is <u>5</u>. 1

12. (4 points) Calculate the least squares solution, \hat{x} , to the equation below. Don't forget to show your work.

$$\frac{\text{METHOD } 2}{\text{A7A } \hat{x} = \text{A7b}} \qquad () \quad \stackrel{\text{normal}}{\text{equatrms, correct}} \\ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1$$

(2 points) What is the symmetric matrix A associated to the quadratic form

$x_1^2 - 9x_2^2 - x_3^2 + 16x_1x_3$ $A = \begin{pmatrix} 1 & 0 & 8 \\ 0 & -9 & 0 \\ 8 & 0 & -1 \end{pmatrix}$ (D) main diagonal elements all correct (D) off diag elements all correct

14. (2 points) S is the parallelogram determined by $\vec{v}_1 = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$, and $\vec{v}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. If $A = \begin{pmatrix} 1 & 3 \\ 4 & 2 \end{pmatrix}$, what is the area of the image of S under the map $\vec{x} \mapsto A\vec{x}$? Justify your reasoning.

asea of 5 under Map = / det A det (20) / = / -10.2 / = 20 or: $\left(det \left(A \cdot \begin{pmatrix} 2 & 0 \\ -2 & 1 \end{pmatrix} \right) \right) = \left| det \begin{pmatrix} -4 & 3 \\ 4 & 2 \end{pmatrix} \right| = 20$

15. (4 points) For what values of $\vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ is the system below consistent? Express your answer using parametric vector form. Justify your reasoning.

$$\begin{pmatrix} 0 & 4 \\ 1 & 3 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 4 & b_1 \\ 1 & 3 & b_2 \\ 2 & 2 & b_3 \end{pmatrix} \sim \begin{pmatrix} 0 & 4 & b_1 \\ 1 & 3 & b_2 \\ 0 & -4 & b_3 - 2b_2 \end{pmatrix} \sim \begin{pmatrix} 4 & 3 & b_2 \\ 0 & 4 & b_1 \\ 0 & 0 & b_3 - 2b_2 + b_1 \end{pmatrix}$$

$$\Rightarrow \quad b_3 - 2b_2 + b_1 = 0$$

$$\Rightarrow \quad b_3 - 2b_2 + b_1 = 0$$

$$\Rightarrow \quad b_3 - 2b_2 + b_1 = 0$$

$$\Rightarrow \quad b_3 - 2b_2 + b_1 = 0$$

$$\Rightarrow \quad b_3 - 2b_2 + b_1 = 0$$

$$\Rightarrow \quad b_3 - 2b_2 + b_1 = 0$$

$$\Rightarrow \quad b_3 - 2b_2 + b_1 = 0$$

$$\Rightarrow \quad b_3 - 2b_2 + b_1 = 0$$

$$\Rightarrow \quad b_3 - 2b_2 + b_1 = 0$$

$$\Rightarrow \quad b_3 - 2b_2 + b_1 = 0$$

$$\Rightarrow \quad b_3 - 2b_2 + b_1 = 0$$

$$\Rightarrow \quad b_3 - 2b_2 + b_1 = 0$$

$$\Rightarrow \quad b_3 - 2b_2 + b_1 = 0$$

$$\Rightarrow \quad b_3 - 2b_2 + b_1 = 0$$

$$\Rightarrow \quad b_3 - 2b_2 + b_1 = 0$$

$$\Rightarrow \quad b_3 - 2b_2 + b_1 = 0$$

$$\Rightarrow \quad b_3 - 2b_2 + b_1 = 0$$

$$\Rightarrow \quad b_1 = \begin{pmatrix} b_1 \\ b_2 \\ b_2 \\ b_3 \end{pmatrix} = b_2 \begin{pmatrix} 2 \\ 0 \\ 0 \\ c_1 \end{pmatrix} + b_3 \begin{pmatrix} -1 \\ 0 \\ c_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ c_1 \end{pmatrix} + b_2 \begin{pmatrix} 2 \\ 0 \\ c_1 \end{pmatrix} + b_3 \begin{pmatrix} 2 \\ 0 \\ c_1 \end{pmatrix} = b_1 + b_1 + b_2 + b_2 + b_3 + b_2 + b_3 + b_2 + b_3 + b$$

Solutions

16) Consider the sequence of row operations that reduce matrix A to the identity.

$$A = \underbrace{\begin{pmatrix} -1 & 2 & 0\\ 1 & 0 & 0\\ 0 & 4 & 1 \end{pmatrix}}_{A} \sim \underbrace{\begin{pmatrix} 1 & 0 & 0\\ -1 & 2 & 0\\ 0 & 4 & 1 \end{pmatrix}}_{E_{1}A} \sim \underbrace{\begin{pmatrix} 1 & 0 & 0\\ 0 & 2 & 0\\ 0 & 4 & 1 \end{pmatrix}}_{E_{2}E_{1}A} \sim \underbrace{\begin{pmatrix} 1 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 1 \end{pmatrix}}_{E_{3}E_{2}E_{1}A} \sim \underbrace{\begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}}_{E_{4}E_{3}E_{2}E_{1}A} = I_{3}$$

(i) Construct the four elementary matrices E_1 , E_2 , E_3 , and E_4 .

$$E_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, E_2 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, E_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0.5 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- (ii) Consider the matrix products listed below. Which (if any) represents A, and which (if any) represents A^{-1} ?
 - i. $E_1^{-1}E_2^{-1}E_3^{-1}E_4^{-1}$ ii. $E_4E_3E_2E_1$ iii. $E_1E_2E_3E_4$ iv. $E_4^{-1}E_3^{-1}E_2^{-1}E_1^{-1}$

$$A = E_1^{-1} E_2^{-1} E_3^{-1} E_4^{-1}, \text{ and } A^{-1} = E_4 E_3 E_2 E_1.$$
17) Let $A = \begin{pmatrix} 2 & 3 \\ 0 & 1 \end{pmatrix}.$

(i) State the eigenvalues and eigenspaces of A. $\lambda_1 = 2, \lambda_2 = 1$ λ_1 -eigenspace is Span $\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \}, \lambda_2$ -eigenspace is Span $\{ \begin{pmatrix} 3 \\ -1 \end{pmatrix} \}$

(ii) Draw the eigenspaces of A and label them with the corresponding eigenvalue.

- 18) To create Q, Gram-Schmidt vectors, normalize each vector so they all have unit length, place vectors into matrix. To create R, compute $R = Q^T A$.
- 19) Place vectors into a matrix. The matrix will be $m \times n$. Because n < m, the matrix has at most n pivots. The dimension of the column space of the matrix is at most n, which means the vectors cannot span \mathbb{R}^m .
- 20) Let v_j be an eigenvector of **A^TA**

$$||Av_j|| = Av_j \cdot Av_j = v_j^T A^T Av_j = \lambda_j v_j \cdot v_j = \lambda_j ||v_j||^2$$

Therefore all eigenvalues are positive or zero, but never negative.