Sample Final A, Math 1554

PLEASE PRINT YOUR NAME CLEARLY IN ALL CAPITAL LETTERS

First Name _____ Last Name _____

Student GT Email Address: ______@gatech.edu

You do not need to justify your reasoning for questions on this page.

1. (10 points) Determine whether the statements are true or false.

a)	Every line in \mathbb{R}^n is a one-dimensional subspace.	\bigcirc	\bigcirc
b)	If a quadratic form is indefinite, then the associated symmetric matrix is not invertible.	\bigcirc	\bigcirc
c)	If A is a diagonalizable $n \times n$ matrix, then $rank(A) = n$.	\bigcirc	\bigcirc
d)	If A is an orthogonal matrix, then the largest singular value of A is 1.	\bigcirc	\bigcirc
e)	If a linear system has more unknowns than equations, then the system cannot have a unique solution.	\bigcirc	\bigcirc
f)	If S is a one-dimensional subspace of \mathbb{R}^2 , then so is S^{\perp} .	\bigcirc	\bigcirc
g)	If the columns of matrix A span \mathbb{R}^m , then the equation $A\vec{x} = \vec{b}$ is consistent for each \vec{b} in \mathbb{R}^m .	\bigcirc	\bigcirc
h)	If A and B are square matrices and $AB = I$, then A is invertible.	\bigcirc	\bigcirc
i)	A steady state of a stochastic matrix is unique.	\bigcirc	\bigcirc
j)	The Gram-Schmidt algorithm applied to the columns of an $n \times n$ singular matrix produces a set of vectors that form a basis for \mathbb{R}^n .	\bigcirc	\bigcirc

Math 1554, Sample Final A. Your initials: _____ You do not need to justify your reasoning for questions on this page.

- 2. (10 points) Give an example of the following. If it is not possible to do so, write not possible.
 - (a) A matrix $A \in \mathbb{R}^{2 \times 2}$ that is in echelon form, is orthogonally diagonalizable, but is not invertible.

(b) A negative semi-definite quadratic form, Q that has no cross terms and is expressed in the form $\vec{x}^T A \vec{x}$, where $\vec{x} \in \mathbb{R}^4$.

$$Q =$$

(c) A matrix, A, that is the standard matrix for the linear transform $T_A : \mathbb{R}^2 \to \mathbb{R}^2$. T_A first reflects points across the line $x_1 = x_2$, and then projects them onto the x_2 -axis.

$$A = \left(\right.$$

(d) A matrix, A, that is in echelon form, is 3×4 , with columns $\vec{a}_1, \vec{a}_2, \vec{a}_3, \vec{a}_4$. The first two columns of the matrix, \vec{a}_1 and \vec{a}_2 , are linearly independent vectors. Vectors \vec{a}_3 and \vec{a}_4 are in Span $\{\vec{a}_1, \vec{a}_2\}$.

$$A = \left(\begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \right)$$

Math 1554, Sample Final A. Your initials: _____ You do not need to justify your reasoning for questions on this page.

- 3. (10 points) If possible, give an example of the following. If it is not possible, write "not possible".
 - (a) A 5×3 matrix, X, in RREF, such that dim(Col(X)) = 2, and dim(Null(X)) = 3.

(b) A
$$3 \times 3$$
 matrix, Y, in RREF, Row $(Y)^{\perp}$ is spanned by $\begin{pmatrix} 8\\4\\1 \end{pmatrix}$.

(c) A 3×3 matrix, Z, that is not diagonalizable. Z is singular and upper triangular.

(d) A matrix that has one eigenvalue, $\lambda = 3$. The eigenvalue λ has algebraic multiplicity 2, and geometric multiplicity 2.

Math 1554, Sample Final A. Your initials: _____ You do not need to justify your reasoning for questions on this page.

- 4. (5 points) Fill in the blanks.
 - (a) The dimension of the null space of an $n \times n$ invertible matrix is _____.
 - (b) The rank of a 4×5 matrix whose null space is 3-dimensional is _____.
 - (c) Matrix A has two distinct eigenvalues: eigenvalue $\lambda_1 = -2$ with algebraic multiplicity 3, and eigenvalue $\lambda_2 = 3$ with algebraic multiplicity 1.
 - 1. The characteristic equation of A is ______.
 - 2. The dimensions of A are _____.
 - 3. The nullity of *A* is equal to _____.
- 5. (3 points) Suppose T_A is an onto linear transformation. Circle the matrices that A could be equal to, if any.

ſ	1	0	0	4	1	0	3	[1	1]
	0	2	0	3	0	1	1	0	1
	0	0	1	1	0	0	0	0	0

6. (2 points) Circle **possible** if the set of conditions are create a situation that is possible, otherwise, circle **impossible**. You don't need to explain your reasoning.

(a) \vec{v} is a non-zero vector in \mathbb{R}^3 , W is a non-empty subspace of \mathbb{R}^3 , and $(\operatorname{proj}_W \vec{v}) \cdot \vec{v} = \vec{0}$.

possible	impossible
----------	------------

(b) A is 2×3 , dim $(Col(A))^{\perp} = 1$, and A has one pivot column.

possible impossible

Math 1554, Sample Final A. Your initials: _____

7. (4 points) A, B, and C are $n \times n$ invertible matrices. Construct expressions for X and Y in terms of A, B, and C. Don't forget to justify your reasoning.

$\begin{pmatrix} X & 0 & 0 \end{pmatrix} \begin{pmatrix} A & 0 \end{pmatrix} \begin{pmatrix} I & 0 \end{pmatrix}$	X =
$\begin{pmatrix} A & 0 & 0 \\ Y & 0 & I \end{pmatrix} \begin{pmatrix} 0 & A \\ B & I \end{pmatrix} = \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix}$	Y =

8. (6 points) Solve the equation $A\vec{x} = \vec{b}$ by using the LU factorization of A. Do not solve the system by computing A.

$$A = LU = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -2 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 2 \end{bmatrix}, \qquad \vec{b} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

Math 1554, Sample Final A. Your initials:

9. (10 points) Matrix A has only two distinct eigenvalues, which are 5 and -3.

$$A = \begin{pmatrix} -7 & -16 & 4\\ 6 & 13 & -2\\ 12 & 16 & 1 \end{pmatrix}$$

(a) Construct a basis for the eigenspace of A associated with $\lambda_1=5.$

(b) Construct a basis for the eigenspace of A associated with $\lambda_2 = -3$.

(c) If possible, construct matrices P and D such that $A = PDP^{-1}$.

Math 1554, Sample Final A. Your initials:

10. (10 points) Let A = QR be as below.

$$A = QR = \frac{1}{2} \begin{bmatrix} 1 & -\sqrt{2} \\ 1 & 0 \\ 1 & 0 \\ 1 & \sqrt{2} \end{bmatrix} \begin{bmatrix} 6 & 2 \\ 0 & 2\sqrt{2} \end{bmatrix}$$

- (a) dim (Null(Q)) = _____
- (b) The length of the first column of A is _____
- (c) Give an orthogonal basis for Col(A).

(d) Determine the least-squares solution to $A\hat{x} = \begin{pmatrix} 0\\ 2\\ 0\\ 0 \end{pmatrix}$

Math 1554, Sample Final A. Your initials:

- 11. (10 points) Suppose $Q(\vec{x}) = 2x_1^2 + 6x_1x_2 6x_2^2, \quad \vec{x} \in \mathbb{R}^2.$
 - i) Make a change of variable, $\vec{x} = P\vec{y}$, that transforms the quadratic form Q into one that does not have cross-product terms. Give P and the new quadratic form.

- ii) Answer the following. You do not need to justify your reasoning.
 - (a) Classify the quadratic form (e.g. positive definite, positive semidefinite).
 - (b) State the largest value of Q subject to $||\vec{x}|| = 1$.
 - (c) What is the maximum value of Q, subject to the constraints, $\vec{x} \cdot \vec{u} = 0$ and $||\vec{x}|| = 1$?
 - (d) Give a vector, \vec{u} , that specifies a location where the largest value of Q, subject to $||\vec{x}|| = 1$, is obtained.

Math 1554, Sample Final A. Your initials: _____

- 12. (6 points) Let $A = P\begin{pmatrix} 1/2 & 0\\ 0 & 2 \end{pmatrix} P^{-1}$, where P has columns $\vec{v_1}$ and $\vec{v_2}$.
 - (i) State the eigenvalues of A.
 - (ii) Draw $A\vec{x}$ and $A\vec{y}$.

(iii) State a non-zero vector $\vec{p} \in \mathbb{R}^2$ such that $A^k \vec{p} \to \vec{0}$ as $k \to \infty$.

13. (4 points) Let $A = \begin{pmatrix} 1 & -3 \\ -2 & 6 \end{pmatrix}$. Sketch a) ColA, b) Col A^{\perp} , c) Row A^{\perp} , and d) Null A^{\perp} .

Sample Final A, Answers

- 1. True/false.
 - (a) False. For example y = x + 1
 - (b) False. For example $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
 - (c) False.
 - (d) True
 - (e) True
 - (f) True
 - (g) True
 - (h) True
 - (i) False
 - (j) False
- 2. Example construction I.

(a)
$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

(b) $\vec{x}^T \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \vec{x}$
(c) $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$
(d) $\begin{pmatrix} 1 & * & * & * \\ 0 & 1 & * & * \\ 0 & 0 & 0 & 0 \end{pmatrix}$, where $*$ is arbitrary

3. Example construction II.

(a) Not possible. (b) $\begin{pmatrix} 1 & 0 & -8 \\ 0 & 1 & -4 \\ 0 & 0 & 0 \end{pmatrix}$ (c) $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ (d) $3I_2$, or $3 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ 4. Fill in the blank (FITB).

- (a) 0
- (b) 2
- (c) $0 = (\lambda + 2)^3 (\lambda 3)$
- (d) 4×4
- (e) 0
- 5. Only the first matrix.
- 6. Possible/impossible.

(a) possible

- (b) possible
- 7. Solve for X:

$$\begin{split} XA &= I\\ XAA^{-1} &= IA^{-1}\\ X &= A^{-1} \end{split}$$

Now solve for Y.

$$YA + 0 + IB = 0$$
$$YA = -B$$
$$YAA^{-1} = -BA^{-1}$$
$$Y = -BA^{-1}$$

For full points show some work.

8. Let $\vec{y} = U\vec{x}$. Then $L\vec{y} = \vec{b}$.

$$\begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -2 & -1 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$

By inspection $y_1 = y_2 = 1$ and $y_3 = 2$. Now solve $U\vec{x} = \vec{y}$.

$$\begin{pmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 : x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$

By inspection,

$$x_3 = 2 - 2x_4$$

$$x_2 = 1 - 4x_4$$

$$x_1 = 1 + x_4 - x_3 = -1 + 3x_4$$

Sample Final A

Thus,

$$\vec{x} = \begin{pmatrix} -1\\1\\2\\0 \end{pmatrix} + x_4 \begin{pmatrix} 3\\-4\\-2\\1 \end{pmatrix}$$

9. Diagonalization.

(a)

$$A - 5I = \begin{pmatrix} -12 & -16 & 4\\ 6 & 13 & -2\\ 12 & 16 & 1 \end{pmatrix} \sim \begin{pmatrix} 3 & 4 & -1\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix}$$

Thus $3x_1 + 4x_2 - x_3 = 0$. We obtain two eigenvectors,

$$\vec{v}_1 = \begin{pmatrix} 1\\0\\3 \end{pmatrix}, \vec{v}_2 = \begin{pmatrix} 4\\-3\\0 \end{pmatrix}$$

(b)

$$A+3I = \begin{pmatrix} -4 & -16 & 4\\ 6 & 16 & -2\\ 12 & 16 & 4 \end{pmatrix} \sim \begin{pmatrix} 1 & 4 & -1\\ 3 & 8 & -1\\ 3 & 4 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 4 & -1\\ 0 & -4 & 2\\ 0 & -4 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1\\ 0 & 2 & -1\\ 0 & 0 & 0 \end{pmatrix}$$
$$\Rightarrow \vec{v}_3 = \begin{pmatrix} 2\\ -1\\ -2 \end{pmatrix}$$

(c) Place eigenvectors and eigenvalues into P and D.

$$P = \begin{pmatrix} 1 & 4 & 2 \\ 0 & -3 & -1 \\ 3 & 0 & -2 \end{pmatrix}, \quad D = \begin{pmatrix} 5 & \\ 5 & \\ & -3 \end{pmatrix}$$

10. (a) 0

(b) 6

(c) The columns of
$$Q$$
, which are $\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} -\sqrt{2}\\0\\0\\\sqrt{2} \end{pmatrix}$

(d)

$$R\hat{x} = Q^{T}\vec{b}$$

$$\begin{pmatrix} 6 & 2\\ 0 & 2\sqrt{2} \end{pmatrix} \begin{pmatrix} x_{1}\\ x_{2} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1\\ -\sqrt{2} & 0 & 0 & \sqrt{2} \end{pmatrix} \begin{pmatrix} 0\\ 2\\ 0\\ 0 \end{pmatrix} = \begin{pmatrix} 1\\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 6 & 2\\ 0 & 2\sqrt{2} \end{pmatrix} \begin{pmatrix} x_{1}\\ x_{2} \end{pmatrix} = \begin{pmatrix} 1\\ 0 \end{pmatrix}$$

So
$$x_1 = 1/6$$
 and $x_2 = 0$.

11.

$$Q = x^T A x = x^T \begin{pmatrix} 2 & 3 \\ 3 & -6 \end{pmatrix} x$$

By inspection $\lambda = -7, 3$. Could solve $0 = \det(A - \lambda I)$. For $\lambda_1 = -7$,

$$A + 7I = \begin{pmatrix} 9 & 3\\ 3 & 1 \end{pmatrix} \Rightarrow \vec{v}_1 = \frac{1}{\sqrt{10}} \begin{pmatrix} 1\\ -3 \end{pmatrix}$$

For $\lambda_2 = 3$,

$$A - 3I = \begin{pmatrix} -1 & 3\\ * & * \end{pmatrix} \Rightarrow \vec{v}_2 = \frac{1}{\sqrt{10}} \begin{pmatrix} 3\\ 1 \end{pmatrix}$$

We could also obtain \vec{v}_2 knowing that A is symmetric, so \vec{v}_1 and \vec{v}_2 must be orthogonal. But we can now construct P:

$$P = \frac{1}{\sqrt{10}} \begin{pmatrix} 1 & 3\\ -3 & 1 \end{pmatrix}$$

The new quadratic form is

$$Q = -7y_1^2 + 3y_2^2$$

The change of variable is $\vec{y} = P^{-1}\vec{x}$, or $\vec{x} = P\vec{y}$.

- (i) indefinite
- (ii) the largest eigenvalue, $\lambda_2 = 3$
- (iii) other eigenvalue, $\lambda_1=-7$
- (iv) the unit eigenvector corresponding to the largest eigenvalue, which is $\vec{u} = \vec{v}_2 = \frac{1}{\sqrt{10}} \begin{pmatrix} 3\\1 \end{pmatrix}$ or $\vec{u} = -\vec{v}_2 = -\frac{1}{\sqrt{10}} \begin{pmatrix} 3\\1 \end{pmatrix}$.

12. $A = P \begin{pmatrix} 1/2 & 0 \\ 0 & 2 \end{pmatrix} P^{-1}$, where P has columns $\vec{v_1}$ and $\vec{v_2}$.

(i) By inspection, $\lambda_1=1/2$, $\lambda_2=2$

$$Ax = A(2v_2 - 2v_1) = 2Av_2 - 2Av_1 = 4v_2 - v_1$$
$$Ay = A(-2v_2 - 4v_1) = -4v_2 - 2v_1$$

(iii) If $p = v_1$, then $A^k p = \lambda_1^k v_1 \to \vec{0}$ as $k \to \infty$ because $\lambda_1^k \to 0$.

