Sample Final B, Math 1554

PLEASE PRINT YOUR NAME CLEARLY IN ALL CAPITAL LETTERS

First Name _____ Last Name _____

Student GT Email Address: ______@gatech.edu

You do not need to justify your reasoning for questions on this page.

1. (10 points) Determine whether the statements are true or false.

	true	false
a) If $A = A^T$, $\vec{x} \neq \vec{y}$, $A\vec{x} = 3\vec{x}$, and $A\vec{y} = -\vec{y}$, then $\vec{x}^T\vec{y} = 0$.	\bigcirc	\bigcirc
b) If \vec{x}_1 maximizes a quadratic form, $Q(\vec{x})$, subject to the constraint $ \vec{x} = 1$, then so does $-\vec{x}_1$.	\bigcirc	\bigcirc
c) If U is an echelon form of matrix A, then $Col(U) = Col(A)$.	\bigcirc	\bigcirc
d) $S = \{ \vec{x} \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 1 \}$ is a subspace of \mathbb{R}^3 .	\bigcirc	\bigcirc
e) An eigenspace is a subspace spanned by a single eigenvector.	\bigcirc	\bigcirc
f) Row operations on a $n \times n$ matrix do not change its eigenvalues.	\bigcirc	\bigcirc
g) If $A \in \mathbb{R}^{n \times n}$ and \vec{x} and \vec{y} are vectors in \mathbb{R}^n , then $A\vec{x} \cdot A\vec{y} = \vec{x}^T A^T A \vec{y}$.	\bigcirc	\bigcirc
h) If the eigenvalues of 3×3 matrix A are $1, 2, 4$, and $A = PBP^{-1}$, for 3×3 matrices P and B , then the eigenvalues of B are $1, 2, 4$.	\bigcirc	\bigcirc
i) The orthogonal compliment of the subspace $H = \{ \vec{x} \in \mathbb{R}^3 x_1 = x_2 - x_3 \}$ is a line.	\bigcirc	\bigcirc
j) If A is a $n \times n$ matrix, \vec{x} and \vec{y} are in \mathbb{R}^n , and $A\vec{x} = A\vec{y}$ for a particular $\vec{x} \neq \vec{y}$, then dim $(\text{Row}(A)^{\perp}) \neq 0$.	\bigcirc	\bigcirc

You do not need to explain your reasoning for questions on this page.

- 2. (10 points) If possible, give an example of the following. If it is not possible, write "not possible".
 - (a) A Google Matrix, G, for the set of web pages that link to each other according to the diagram below.

- (b) A homogeneous linear system with two equations that has no solutions.
- (c) A matrix $A \in \mathbb{R}^{2 \times 2}$ that is orthogonally diagonalizable but is not invertible.
- (d) A 2 × 2 matrix whose eigenvalues are $\lambda_1 = 5$ and $\lambda_2 = 10$, and whose corresponding eigenvectors are $\vec{v}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \vec{v}_2 = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$.

You do not need to explain your reasoning for questions on this page.

- 3. (10 points) If possible, give an example of the following. If it is not possible, write "not possible".
 - (a) A 2×2 matrix that is stochastic and orthogonal.
 - (b) A 5 × 3 matrix, A, in reduced echelon form, such that dim $(Col(A)^{\perp}) = 1$.
 - (c) A quadratic form $Q : \mathbb{R}^3 \mapsto \mathbb{R}$, with no cross-terms, that has maximum value 5, subject to the constraint that $||\vec{x}|| = 1$.
 - (d) A matrix that is the standard matrix for the linear transform $T : \mathbb{R}^2 \to \mathbb{R}^2$. T first rotates points counterclockwise by π radians, and then reflects them through the line $x_1 = x_2$.

(e) A 3×2 matrix whose column space is spanned by the vector $\begin{pmatrix} 2\\0\\1 \end{pmatrix}$ and whose null space is the line $x_1 = 4x_2$.

You do not need to explain your reasoning for questions on this page.

4. Below is a SVD factorization for a matrix $A = U\Sigma V^T$, where

$$U = \begin{bmatrix} \vec{u}_1 & \vec{u}_2 & \vec{u}_3 & \vec{u}_4 \end{bmatrix}, \ \Sigma = \begin{bmatrix} 4 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \ V = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 & \vec{v}_4 & \vec{v}_5 \end{bmatrix}$$

Fill in the blanks.

- (a) (1 point) What is the rank of A?
- (b) (1 point) What is the largest value of $||A\vec{x}||$, subject to $||\vec{x}|| = 1$?
- (c) (1 point) List an orthonormal basis for RowA.
- (d) (1 point) List an orthonormal basis for ColA.
- 5. (2 points) If possible, fill in the missing entries of the 3×3 matrices with numbers so that the matrices are singular. If it is not possible to do so, write "not possible" below the matrix.

$$B = \begin{bmatrix} 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \qquad \qquad C = \begin{bmatrix} 3 & 3 \\ 2 & 3 & 2 \\ 1 & 0 & 1 \end{bmatrix}$$

- 6. (4 points) Fill in the blanks. You do not need to explain your reasoning.
 - (a) Suppose $\vec{u} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\vec{v} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$. The area of the parallelogram determined by $\vec{0}, \vec{u}, \vec{v}$, and $\vec{u} + \vec{v}$ is _____.
 - (b) If Q is $n \times n$ and orthogonal, then $Q^T Q$ equals _____.
 - (c) If A is square and singular, at least one eigenvalue of A is _____.
 - (d) If A is 3×3 , dim(Col(A)) = 1, then dim(Row(A^T)) = _____.

7. (5 points) If possible, compute the LU factorization of A. Clearly indicate matrices L and U.

$$A = \begin{bmatrix} 2 & 4 & 9 & 1 \\ 2 & 1 & 0 & 0 \\ 4 & 5 & 9 & 0 \end{bmatrix}$$

8. $H = \{ \vec{x} \in \mathbb{R}^3 : x_1 - x_2 - 9x_3 = 0 \}.$

(a) (3 points) Construct a basis for H.

(b) (2 points) Write down a basis for H^{\perp} .

- 9. (6 points) Suppose there are two cities, A and B. Every year,
 - 60% of the people from A move to B, and 40% stay in A.
 - 10% of the people from B move to A, and 90% stay in B.

The initial populations of A and B are a_0 and b_0 , respectively.

- (a) What is the stochastic matrix for this situation?
- (b) After a long period of time, what is the population in city A?

10. (3 points) Identify a non-zero value of k so that P has one real eigenvalue of algebraic multiplicity 2, and another real eigenvalue with algebraic multiplicity 1. Show your work.

$$P = \begin{pmatrix} 3 & 1 & 0 \\ k & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$

11. (10 points) Construct an SVD for
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 0 \\ 0 & 2 \end{pmatrix}$$
.

12. (10 points) Find the least squares solution, \hat{x} , to the equation below. Don't forget to show your work.

13. (10 points) Let $A = \begin{pmatrix} 1 & 5 \\ -2 & 3 \end{pmatrix}$. This question is from sample midterm 3A, its solution is on Canvas and Piazza.

(a) Calculate the eigenvalues of A.

(b) If possible, construct matrices P and C such that $A = PCP^{-1}$.

Sample Final B, Answers

- 1. True/false.
 - (a) True
 - (b) True
 - (c) False
 - (d) False
 - (e) False
 - (f) False
 - (g) True
 - (h) True
 - (i) True
 - (j) True
- 2. Example Construction.

(a)
$$G = \frac{0.85}{4} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 4 & 0 & 2 & 1 \\ 0 & 4 & 0 & 1 \\ 0 & 0 & 2 & 1 \end{pmatrix} + \frac{0.15}{4} K$$
, where K is a 4×4 matrix of ones.

(b) Not possible (every homogeneous system has a trivial solution)

(c)
$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

(d) $A = PDP^{-1} = \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 5 \\ & 10 \end{pmatrix} \begin{pmatrix} 2/5 & 1/5 \\ -1/5 & 2/5 \end{pmatrix} = \begin{pmatrix} 6 & -2 \\ -2 & 9 \end{pmatrix}$

3. Example Construction.

(a) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ (b) Not possible (c) $Q = 5x_1^2$ (d) $A = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ (e) $\begin{pmatrix} 2 & -8 \\ 0 & 0 \\ 1 & -4 \end{pmatrix}$

4. Fill in the blanks:

- (b) 4
- (c) v_1, v_2, v_3
- (d) u_1, u_2, u_3
- 5. Matrix completion.

$$B = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \qquad \qquad C = \begin{bmatrix} 3 & 3 & 3 \\ 2 & 3 & 2 \\ 1 & 0 & 1 \end{bmatrix}$$

- 6. Fill in the blanks.
 - (a) 2
 - (b) *I*_n
 - (c) 0
 - (d) 1 since it has one pivot.
- 7. LU factorization.

$$A = \begin{pmatrix} 2 & 4 & 9 & 1 \\ 2 & 1 & 0 & 0 \\ 4 & 5 & 9 & 0 \end{pmatrix}$$
$$\sim \begin{pmatrix} 2 & 4 & 9 & 1 \\ 0 & -3 & -9 & -1 \\ 0 & -3 & -9 & -2 \end{pmatrix}$$
$$\sim \begin{pmatrix} 2 & 4 & 9 & 1 \\ 0 & -3 & -9 & -1 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$
$$= U$$

By inspection, based on the row operations we used to produce \boldsymbol{U} from $\boldsymbol{A},$

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 1 & 1 \end{pmatrix}$$

8. (a) One equation in three variables: we seek two basis vectors. Choose $x_2 = 1$ and $x_3 = 0$ to obtain $v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$. Choose $x_2 = 0$ and $x_3 = 1$ to obtain

$$v_2 = \begin{pmatrix} 9\\0\\1 \end{pmatrix}$$

A basis for H is $\{v_1, v_2\}$.

(b) The basis for H^{\perp} has only one non-zero vector, v_3 . Any non-zero vector that is perpendicular to both v_1 and v_2 will suffice. By inspection,

$$v_3 = \begin{pmatrix} 1\\ -1\\ -9 \end{pmatrix}$$

9. Markov Chain.

(a)
$$P = \frac{1}{10} \begin{pmatrix} 4 & 1 \\ 6 & 9 \end{pmatrix}$$

(b) Solve

$$(P-I)\vec{x} = \vec{0}$$
$$0.10 \begin{pmatrix} -6 & 1\\ 6 & -1 \end{pmatrix} \vec{x} = \vec{0}$$

Thus, $\vec{x} = \frac{1}{7} \begin{pmatrix} 1 \\ 6 \end{pmatrix}$. After a long period of time, the population in city A is

$$\frac{a_0+b_0}{7}$$

10. Set up the usual determinant:

$$0 = |P - \lambda I|$$

= $(\lambda - 5)((3 - \lambda)(3 - \lambda) - k)$
= $(\lambda - 5)(9 - 6\lambda + \lambda^2 - k)$

If k = 4, then $\lambda = 5$ has algebraic multiplicity two.

$$A^{T}A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 5 & 2 \\ 2 & 8 \end{pmatrix}$$

By solving characteristic equation, $\lambda = 4, 9$.

$$\Sigma = \begin{pmatrix} 3 & 0\\ 0 & 2\\ 0 & 0 \end{pmatrix}$$

V matrix:

$$A^{T}A - 9I = \begin{pmatrix} -4 & 2 \\ * & * \end{pmatrix}, \quad * = \text{not needed}$$

Thus, an eigenvector is $\vec{v}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. And $A^T A$ is symmetric, so $\vec{v}_1 \cdot \vec{v}_2 = 0$. So $\vec{v}_2 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$. Scale these vectors so they have unit length, place them into a matrix,

$$V = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 2\\ 2 & -1 \end{pmatrix}$$

Sample Final B

U matrix:

$$\vec{u}_{1} = \frac{1}{\sigma_{1}} A \vec{v}_{1} = \frac{1}{3\sqrt{5}} \begin{pmatrix} 1 & 2\\ 2 & 0\\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1\\ 2 \end{pmatrix} = \frac{1}{3\sqrt{5}} \begin{pmatrix} 5\\ 2\\ 4 \end{pmatrix}$$
$$\vec{u}_{2} = \frac{1}{\sigma_{2}} A \vec{v}_{2} = \frac{1}{2\sqrt{5}} \begin{pmatrix} 1 & 2\\ 2 & 0\\ 0 & 2 \end{pmatrix} \begin{pmatrix} 2\\ -1 \end{pmatrix} = \frac{1}{2\sqrt{5}} \begin{pmatrix} 0\\ 4\\ -2 \end{pmatrix}$$

 $ec{u}_3\in {\sf Col}A^\perp$, so set

$$\vec{u}_3 = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

and solve equations

 $\vec{u}_1 \cdot \vec{u}_3 = \vec{u}_2 \cdot \vec{u}_3 = 0$

This yields

$$0 = 5a + 2b + 4c$$
$$0 = 4b - 2c$$

One variable is free: set c = 2, then b = 1 and a = 2.

$$\vec{u}_3 = \frac{1}{3} \begin{pmatrix} -2\\1\\2 \end{pmatrix}$$

The \boldsymbol{U} matrix is

$$U = \begin{pmatrix} \frac{5}{3\sqrt{5}} & \frac{0}{2\sqrt{5}} & \frac{-2}{3} \\ \frac{2}{3\sqrt{5}} & \frac{4}{2\sqrt{5}} & \frac{1}{3} \\ \frac{4}{3\sqrt{5}} & \frac{-2}{2\sqrt{5}} & \frac{2}{3} \end{pmatrix}$$

The SVD is

$$A = U \Sigma V^T$$

with U, Σ , and V as above. There is no need to re-write each element out again, but students should indicate that $A = U\Sigma V^T$ somewhere for full points.

12.
$$A^{T}A = \begin{pmatrix} 3 & 2 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}, A^{T}b = \begin{pmatrix} 5 \\ 5 \\ 4 \end{pmatrix}$$
. Solving the normal equation we find $\hat{x} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$
13. $0 = |A - \lambda I| = (1 - \lambda)(3 - \lambda) + 10$
 $0 = \lambda^{2} - 4\lambda + 13$
 $\lambda = 2 \pm \frac{1}{2}\sqrt{16 - 52} = 2 \pm \frac{1}{2}\sqrt{-36} = 2 \pm 3i$
Solve $(A - \lambda I) \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ to find eigenvector.

Choose $\lambda = 2 - 3i$ (you can choose $\lambda = 2 + 3i$ if you prefer)

$$A - \lambda I = \begin{pmatrix} -1+3i & 5\\ -2 & 1+3i \end{pmatrix}$$

Thus, using 2nd row, $-2x_1 + (1+3i)x_2 = 0$. We only need one of the two rows because the two are multiples of each other. A possible solution is $\vec{v} = \begin{pmatrix} 1+3i\\ 2 \end{pmatrix} = \begin{pmatrix} 1\\ 2 \end{pmatrix} + i \begin{pmatrix} 3\\ 0 \end{pmatrix}$

$$\implies P = \begin{pmatrix} 1 & 3 \\ 2 & 0 \end{pmatrix}, C = \begin{pmatrix} 2 & -3 \\ 3 & 2 \end{pmatrix}$$